142 research outputs found

    eTOX ALLIES:an automated pipeLine for linear interaction energy-based simulations

    Get PDF
    Abstract Background Computational methods to predict binding affinities of small ligands toward relevant biological (off-)targets are helpful in prioritizing the screening and synthesis of new drug candidates, thereby speeding up the drug discovery process. However, use of ligand-based approaches can lead to erroneous predictions when structural and dynamic features of the target substantially affect ligand binding. Free energy methods for affinity computation can include steric and electrostatic protein–ligand interactions, solvent effects, and thermal fluctuations, but often they are computationally demanding and require a high level of supervision. As a result their application is typically limited to the screening of small sets of compounds by experts in molecular modeling. Results We have developed eTOX ALLIES, an open source framework that allows the automated prediction of ligand-binding free energies requiring the ligand structure as only input. eTOX ALLIES is based on the linear interaction energy approach, an efficient end-point free energy method derived from Free Energy Perturbation theory. Upon submission of a ligand or dataset of compounds, the tool performs the multiple steps required for binding free-energy prediction (docking, ligand topology creation, molecular dynamics simulations, data analysis), making use of external open source software where necessary. Moreover, functionalities are also available to enable and assist the creation and calibration of new models. In addition, a web graphical user interface has been developed to allow use of free-energy based models to users that are not an expert in molecular modeling. Conclusions Because of the user-friendliness, efficiency and free-software licensing, eTOX ALLIES represents a novel extension of the toolbox for computational chemists, pharmaceutical scientists and toxicologists, who are interested in fast affinity predictions of small molecules toward biological (off-)targets for which protein flexibility, solvent and binding site interactions directly affect the strength of ligand-protein binding

    An on-line post-column detection system for the detection of reactive-oxygen-species-producing compounds and antioxidants in mixtures

    Get PDF
    Reactive oxygen species (ROS) can damage proteins, cause lipid peroxidation, and react with DNA, ultimately resulting in harmful effects. Antioxidants constitute one of the defense systems used to neutralize pro-oxidants. Since pro-oxidants and antioxidants are found ubiquitously in nature, pro-and antioxidant effects of individual compounds and of mixtures receive much attention in scientific research. A major bottleneck in these studies, however, is the identification of the individual pro-oxidants and antioxidants in mixtures. Here, we describe the development and validation of an on-line post-column biochemical detection system for ROS-producing compounds and antioxidants in mixtures. Inclusion of cytochrome P450s and cytochrome P450 reductase also permitted the screening of compounds that need bioactivation to exert their ROS-producing properties. This pro-oxidant and antioxidant detection system was integrated on-line with gradient HPLC. The resulting high-resolution screening technology was able to separate mixtures of ROS-producing compounds and antioxidants, allowing each species to be characterized rapidly and sensitively

    Reversed-phase liquid chromatography coupled on-line to estrogen receptor bioaffinity detection based on fluorescence polarization

    Get PDF
    We describe the development and validation of a high-resolution screening (HRS) platform which couples gradient reversed-phase high-performance liquid chromatography (RP-HPLC) on-line to estrogen receptor α (ERα) affinity detection using fluorescence polarization (FP). FP, which allows detection at high wavelengths, limits the occurrence of interference from the autofluorescence of test compounds in the bioassay. A fluorescein-labeled estradiol derivative (E2-F) was synthesized and a binding assay was optimized in platereader format. After subsequent optimization in flow-injection analysis (FIA) mode, the optimized parameters were translated to the on-line HRS bioassay. Proof of principle was demonstrated by separating a mixture of five compounds known to be estrogenic (17β-estradiol, 17α-ethinylestradiol and the phytoestrogens coumestrol, coumarol and zearalenone), followed by post-column bioaffinity screening of the individual affinities for ERα. Using the HRS-based FP setup, we were able to screen affinities of off-line-generated metabolites of zearalenone for ERα. It is concluded that the on-line FP-based bioassay can be used to screen for the affinity of compounds without the disturbing occurrence of autofluorescence

    Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression

    Get PDF
    Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2x)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted

    Altered spin state equilibrium in the T309V mutant of cytochrome P450 2D6: a spectroscopic and computational study

    Get PDF
    Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme’s active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant

    Active-site structure, binding and redox activity of the heme–thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study

    Get PDF
    Surface-enhance resonance Raman scattering spectra of the heme–thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme’s active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme–imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme’s ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6

    Free energies of binding of R- and S-propranolol to wild-type and F483A mutant cytochrome P450 2D6 from molecular dynamics simulations

    Get PDF
    Detailed molecular dynamics (MD) simulations have been performed to reproduce and rationalize the experimental finding that the F483A mutant of CYP2D6 has lower affinity for R-propranolol than for S-propranolol. Wild-type (WT) CYP2D6 does not show this stereospecificity. Four different approaches to calculate the free energy differences have been investigated and were compared to the experimental binding data. From the differences between calculations based on forward and backward processes and the closure of thermodynamic cycles, it was clear that not all simulations converged sufficiently. The approach that calculates the free energies of exchanging R-propranolol with S-propranolol in the F483A mutant relative to the exchange free energy in WT CYP2D6 accurately reproduced the experimental binding data. Careful inspection of the end-points of the MD simulations involved in this approach, allowed for a molecular interpretation of the observed differences

    Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions

    Get PDF
    Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)

    Particulate matter exposure during pregnancy is associated with birth weight, but not gestational age, 1962-1992: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to air pollutants is suggested to adversely affect fetal growth, but the evidence remains inconsistent in relation to specific outcomes and exposure windows.</p> <p>Methods</p> <p>Using birth records from the two major maternity hospitals in Newcastle upon Tyne in northern England between 1961 and 1992, we constructed a database of all births to mothers resident within the city. Weekly black smoke exposure levels from routine data recorded at 20 air pollution monitoring stations were obtained and individual exposures were estimated via a two-stage modeling strategy, incorporating temporally and spatially varying covariates. Regression analyses, including 88,679 births, assessed potential associations between exposure to black smoke and birth weight, gestational age and birth weight standardized for gestational age and sex.</p> <p>Results</p> <p>Significant associations were seen between black smoke and both standardized and unstandardized birth weight, but not for gestational age when adjusted for potential confounders. Not all associations were linear. For an increase in whole pregnancy black smoke exposure, from the 1<sup>st </sup>(7.4 μg/m<sup>3</sup>) to the 25<sup>th </sup>(17.2 μg/m<sup>3</sup>), 50<sup>th </sup>(33.8 μg/m<sup>3</sup>), 75<sup>th </sup>(108.3 μg/m<sup>3</sup>), and 90<sup>th </sup>(180.8 μg/m<sup>3</sup>) percentiles, the adjusted estimated decreases in birth weight were 33 g (SE 1.05), 62 g (1.63), 98 g (2.26) and 109 g (2.44) respectively. A significant interaction was observed between socio-economic deprivation and black smoke on both standardized and unstandardized birth weight with increasing effects of black smoke in reducing birth weight seen with increasing socio-economic disadvantage.</p> <p>Conclusions</p> <p>The findings of this study progress the hypothesis that the association between black smoke and birth weight may be mediated through intrauterine growth restriction. The associations between black smoke and birth weight were of the same order of magnitude as those reported for passive smoking. These findings add to the growing evidence of the harmful effects of air pollution on birth outcomes.</p
    corecore